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Proposed method: Mapping

Goal: 
Maximize the cognate sharing

Example:
Chinese Hanzi and Japanese Kanji

漢

汉

漢

Chinese
Hanzi

Japanese
Kanji

Early ages

Simplified
(1950s)

漢Now

Background:
Kanji borrowed from Hanzi
Over time the written scripts diverged

Method:
Map Hanzi to Kanji by a mapping table
(Chu et al., 2012)

Mapping
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Proposed method: Mapping

Goal: 
Maximize the cognate sharing

Method: Map Hanzi to Kanji
One Hanzi may map to many Kanji
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Method 1:  one-to-one mapping
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Goal: 
Reduce difference between train and test
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Goal: 
Reduce difference between train and test

Method:
Data Selection

Method 1: LM based data selection

Method 2: Length based data selection

Length Distribution (LD) of target data LD of train data

LD
Data selection

LD of selected train data

Proposed method: Data Selection
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Goal: 
Reduce difference between train and test

Method:
Data Selection

Method 1: LM based data selection

Method 2: Length based data selection

LD of target data and original train dataProposed method: Data Selection
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Goal: 
Reduce difference between train and test

Method:
Data Selection

Method 1: LM based data selection

Method 2: Length based data selection

LD of target data and original input data

LD of target data and selected input data

Proposed method: Data Selection



Pre-train: MASS (Song+, 2019)

Method:
Input: Monolingual sentence 

with tokens [MASK]ed

Target: [MASK]ed tokens
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Experiment settings:

Interested languages:
Japanese and English

Assisting languages:
Chinese, French, Arabic and Russian
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Experiment settings:

Interested languages:
Japanese and English

Assisting languages:
Chinese, French, Arabic and Russian

Dataset:
Pre-train:

Ja, En: ASPEC (Nakazawa+, 2016)
Others: Common Crawl* 

Fine-tune:
Ja-En: ASPEC(Nakazawa+, 2016)

No overlap with pre-train data
Data for LM: News commentary*

Data pre-processing:
Normalization and filtering
Script mapping for Zh->Ja
KenLM to train LM

*http://data.statmt.org/ngrams/
*http://data.statmt.org/news-commentary/v14/
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Experiment settings:

Interested languages:
Japanese and English

Assisting languages:
Chinese, French, Arabic and Russian

Dataset:
Pre-train:

Ja, En: ASPEC (Nakazawa+, 2016)
Others: Common Crawl* 

Fine-tune:
Ja-En: ASPEC(Nakazawa+, 2016)

No overlap with pre-train data
Data for LM: News commentary*

Data pre-processing:
Normalization and filtering
Script mapping for Zh->Ja
KenLM to train LM

Train and evaluate:
• Tensor2tensor (Vaswani+, 2018) with 

‘transformer_big’ setting
• Shared vocab of 64k, using SentencePiece

(Kuro+, 2018)
• sacreBLEU

*http://data.statmt.org/ngrams/
*http://data.statmt.org/news-commentary/v14/
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Results:

1. Extreme Low Resource Situation
Compared with baseline, using monolingual data from assisting languages helps.
There may be conflicts between data of different assisting languages.
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Results:

2. Low Resource Situation
Compared with baseline, using monolingual data from assisting languages helps.
There may be conflicts between data of different assisting languages.
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Results:

3. Rich Resource Situation
Data from assisting languages does not help.
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Results:

Mapping:
1-to-1 Zh->Ja mapping is better than many-to-many mapping
Japanese LM cannot directly apply to Chinese mapped data
Segmentation granularity of Chinese and Japanese data is different
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Results:

Data Selection:
Sentence length distribution selection is better than LM score method
Maybe the data used to train the LM is not in-domain.
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Results:

Different assisting languages:
Similar languages performs better than randomly selected languages
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Conclusions:

• Leveraging monolingual data from other languages to improve NMT is 
possible.

• Script mapping is a good way to improve data similarity thus improve 
performance.

Future work:
• Explore data selection methods

• Experiments with more challenging language pairs such as Japanese-Russian
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