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Enough parallel data < Neural Machine Translation
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Lack of large parallel corpora — Low performance
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Lack of large parallel corpus « Back Translation
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BT: Initial MT — Final MT performance
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BT: Small parallel corpus — Low performance
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Low-resource situation <« Pre-train
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Extreme Low-resource: Lack both parallel and monolingual
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Lack of monolingual data <« Proposed method
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Proposed method: Overview
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Proposed method: Overview
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Proposed method: Overview
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Proposed method: Overview
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Proposed method: Mapping
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Proposed method: Mapping

Goal:

Maximize the cognate sharing
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Proposed method: Mapping

Chinese Japanese

Maximize the cognate sharing H\aj{}m K&E}]l
Example: Early ages {5 i<

Chinese Hanzi and Japanese Kanji

Goal:
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Proposed method: Mapping

Chinese Japanese
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Proposed method: Mapping

Goal:

Maximize the cognate sharing
Example:

Chinese Hanzi and Japanese Kanji

Background:
Kanji borrowed from Hanzi

Over time the written scripts diverged

Chinese
Hanzi

Japanese
Kanji

Early ages Q"‘i

Simplified
(1950s)

Now N

N
> 52
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Proposed method: Mapping

Chinese Japanese

Goal: Hanzi Kanji

Maximize the cognate sharing - N
Example: Early ages {5 > 155
Chinese Hanzi and Japanese Kanji

Background:
Kanji borrowed from Hanzi
Over time the written scripts diverged Slmphfled
Method: (19508)
Map Hanzi to Kanji by a mapping table
(Chu et al., 2012) |
» SN -
Now ™ - {5

Mapping
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Proposed method: Mapping

Goal:

Maximize the cognate sharing

Method: Map Hanzi to Kanji
One Hanzi may map to many Kanji
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Proposed method: Mapping

Goal:
Maximize the cognate sharing

Method: Map Hanzi to Kanji
One Hanzi may map to many Kanji

Method 1: one-to-one mapping
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Proposed method: Mapping

Goal: o | Hanzi Kanji
Maximize the cognate sharing

Method: Map Hanzi to Kanji
One Hanzi may map to many Kanji
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Proposed method: Mapping

Goal:

Maximize the cognate sharing

. . Al —>
Method: Map Hanzi to Kanji
One Hanzi may map to many Kanji .
J/Q >

~ul

Method 1: one-to-one mapping

Method 2: many-to-many mapping Japanese word
Chinese word (Synthetic)

HLAE ~
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Proposed method: Mapping

Goal:

Maximize the cognate sharing

Method: Map Hanzi to Kanji
One Hanzi may map to many Kanji

Method 1: one-to-one mapping

Method 2: word-to-word mapping

ANy
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| Japanese word
Chinese word (Synthetic)

HLAE ~

1

Japanese LM
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Proposed method: Mapping

Goal:

Maximize the cognate sharing

Method: Map Hanzi to Kanji
One Hanzi may map to many Kanji

Method 1: one-to-one mapping

Method 2: word-to-word mapping

| Japanese word
Chinese word (Synthetic)
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pster
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Proposed method: Data Selection
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Proposed method: Data Selection

Goal:

Reduce difference between train and test
Method:

Data Selection

Method 1: LM based data selection
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Proposed method: Data Selection

Goal:

Reduce difference between train and test
Method:

Data Selection

Method 1: LM based data selection

Method 2: Length based data selection
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Proposed method: Data Selection

Length Distribution (LD) of target data LD of train data
woal =
Reduce difference between train and test ..
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Proposed method: Data Selection

Length Distribution (LD) of target data LD of train data

woal =

Reduce difference between train and test .
Method:

Data Selection ]

Method 1: LM based data selection

Method 2: Length based data selection LD
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LD of target data and original train data

Proposed method: Data Selection
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Proposed methOd: Data SeleCtion LD of target data and original input data
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Pre-train: MASS (Song+, 20190 e
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Experiment settings:

Interested languages:
Japanese and English
Assisting languages:
Chinese, French, Arabic and Russian
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Experiment settings:

Interested languages:
Japanese and English
Assisting languages:
Chinese, French, Arabic and Russian

Dataset:
Pre-train:
Ja, En: ASPEC (Nakazawa+, 2016)
Others: Common Crawl®
Fine-tune:
Ja-En: ASPECNakazawa+, 2016)

No overlap with pre-train data
Data for LM: News commentary”

Data pre-processing:
Normalization and filtering
Script mapping for Zh->Ja
KenLLM to train LM

*http://data.statmt.org/ngrams/
*http://data.statmt.org/news-commentary/v14/
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Experiment settings:

Interested languages:
Japanese and English
Assisting languages:
Chinese, French, Arabic and Russian

Dataset:
Pre-train:
Ja, En: ASPEC (Nakazawa+, 2016)
Others: Common Crawl®
Fine-tune:
Ja-En: ASPECNakazawa+, 2016)

No overlap with pre-train data
Data for LM: News commentary”

Data pre-processing:
Normalization and filtering
Script mapping for Zh->Ja
KenLLM to train LM

Train and evaluate:

Tensor2tensor (Vaswani+, 2018) with
‘transformer_big’ setting

Shared vocab of 64k, using SentencePiece
(Kuro+, 2018)

sacreBLEU

*http://data.statmt.org/ngrams/
*http://data.statmt.org/mews-commentary/v1l4/ 36



Results:

Pre-training | Fipe-tuning

# : | En—Ja Ja—En |
Data pre-processing : Zh Ja En Fr 3K 10K 20K 50K | 3K 10K 20K 50K |

i

Al - |i - - - - 25 60 144 229 (1.8 46 109 194 |
I

Bl 1-to-1 Zh—Ja mapping + LM i 20M - - - 53 145 200 26.1 | 3.7 112 15.6 205 |
B2 LM = - - 20M | 34 9.1 149 234 |21 63 113 177
B3 1-to-1 Zh—Ja mapping + LM ] 20M - - 20M | 2.1 67 126 219 | 22 63 107 168 |

1. Extreme Low Resource Situation
Compared with baseline, using monolingual data from assisting languages helps.
There may be conflicts between data of different assisting languages.
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Results:

Pre-training- - - - o o e e Fine-tining - - o oo

# : En—Ja Ja—En
Data pre-processing Zh Ja En Fr 3K 10K 20K 50K | 3K 10K 20K 50K
Al | - - : . - |25 60 144 229 |18 46 109 194
Cl LD - IM IM . 7.7 158 207 263 | 7.2 127 1577 19.6
C2 1-to-1 Zh—Ja mapping + LD 20M IM 1M . 83 164 202 269 |75 125 163 20.7
C3 LD - IM IM 20M | 83 153 193 267 | 68 123 154 204
C4 1-to-1 Zh—Ja mapping + LD 20M 1M IM  20M | 7.1 152 194 265 | 66 120 154 199

2. Low Resource Situation
Compared with baseline, using monolingual data from assisting languages helps.
There may be conflicts between data of different assisting languages.
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Results:

Pre-training- - - - o o e e Fine-tining - - o oo

# : En—Ja Ja—En |

Data pre-processing | Zh Ja En Fr 3K 10K 20K 50K | 3K 10K 20K 50K i
Al | - I - : . - |25 60 144 229 |18 46 109 194 E
Dl LD - ISM ISM - 96 17.2 215 28.0 | 86 135 168 209 |
D2 1-to-1 Zh—Ja mapping + LD 20M  ISM  I5M - 97 17.1 21.6 272 | 83 133 167 20.6 |
D3 LD - ISM I5SM 20M | 7.7 150 198 263 | 63 11.7 151 202
D4 1-to-1 Zh—Ja mapping + LD 20M ISM I5SM 20M | 7.7 149 197 26.1 | 65 114 154 198 |

3. Rich Resource Situation
Data from assisting languages does not help.
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Results:

Pre-training Fine-tuning
# : En—Ja Ja—En
Data pre-processing Zh Ja En Fr 3K 10K 20K 50K ‘ 3K 10K 20K SOK
Al - 2. 6.0 144
El 1-to-1 Zh—Ja mapping 20M 20M  20M 20M | 7.0 134 193 257 |59 111 150 19.8 |
E2 LM-scoring Zh—Ja mapping 20M 20M 20M 20M | 63 127 181 247 | 57 103 135 189 |
Mapping:

1-to-1 Zh->Ja mapping is better than many-to-many mapping
Japanese LM cannot directly apply to Chinese mapped data
Segmentation granularity of Chinese and Japanese data 1s different
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Results:

Pre-training Fine-tuning
# : En—Ja Ja—En
Data pre-processing Zh Ja En Fr 3K 10K 20K 50K | 3K 10K 20K 50K
Al : L - : . - 25 60 144 229 | 18 46 109 194
____________________________________________________________ -
Dl LD |- ISM  ISM - 96 17.2 215 28.0 | 86 135 168 20.9
Fl LM-scoring L. 20M__20M - [ 47 117 166 239 |45 9.1 __129 183

Data Selection:

Sentence length distribution selection is better than LM score method
Maybe the data used to train the LM 1s not in-domain.
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Results:

Pre-training Fine-tuning
# : En—lJa Ja—En
Data pre-processing Zh Ja En Fr 3K 10K 20K 50K ‘ 3K 10K 20K SOK
Al - L - - - - 25 60 144 229|118 46 109 194
T — T —— =}
Fl LM-scoring 20M  20M : 47 117 166 239 | 45 9.1 129 183 |
F2 | 1-to-1 Zh—Ja m_qp_pm,,_+ LM-scaring_ 70M 7.0 :
F3 LM-scoring 3 Ar20M + Ru20M |

Different assisting languages:
Similar languages performs better than randomly selected languages
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Conclusions:

 Leveraging monolingual data from other languages to improve NMT 1is
possible.

* Script mapping is a good way to improve data similarity thus improve
performance.

Future work:

« Explore data selection methods

« Experiments with more challenging language pairs such as Japanese-Russian
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Thanks for listening!
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