
Invocation-driven Neural Approximate Computing with a 
Multiclass-Classifier and Multiple Approximators

Haiyue Song, Chengwen Xu, Qiang Xu, Zhuoran Song, Naifeng Jing, Xiaoyao Liang, and Li Jiang
Advanced Computer Architecture Laboratory
Shanghai Jiao Tong University



Background

Related works and Motivation

Proposed Method

Experiment Results

Conclusion

1

2

3

4

5



Approximate Computing

• Many applications are error tolerant

• Neural network (NN) is suitable to approximate a code block/function

• Amdahl law: performance limited by serial code

• NN has high parallelism, e.g., FPGA, ASIC, GPU

• An interesting facts: Neural network can approximate any continuous function 

Image ProcessingMachine Learning Robotics

10%
ErrorOriginal

Data Mining



Background

Related works and Motivation

Proposed Method

Experiment Results

Conclusion

1

2

3

4

5



▪ Model based quality control for Approximate Computing [ISCA’15, ISLPED’16, DATE’16]

Related works

• Classifier：predict the data is “approximatable” or not

• Approximator (Accelerator)：approximately compute data at 
fast speed and low power consumption

• Error：the gap between the output of approximator and that of 
original program

With quality control architecture

NN-based

NN-based
Error < 𝜃 Error > 𝜃



▪ Model based quality control for Approximate Computing [ISCA’15, ISLPED’16, DATE’16]

▪ Question: 

How to train NN-based classifier and approximator?

Related works

• Classifier：predict the data is “approximatable” or not

• Approximator (Accelerator)：approximately compute data at 
fast speed and low power consumption

• Error：the gap between the output of approximator and that of 
original program

With quality control architecture

NN-based

NN-based
Error < 𝜃 Error > 𝜃



▪ One-pass training[ISCA’16]

▪ Train Approximator and Classifier separately

▪ Ignore the correlation between the two NNs

Related works

One-pass training method



▪ Iterative training[DAC’17]

▪ Train Approximator and Classifier together using iterative training

▪ Classifier correlate with Approximator

▪ Data with low error is easy to predict

Related works

Iterative training



▪ Problems

▪ Even iterative training, some data still fail to be approximated (red part in the figure)

▪ Single Approximator may overfit one cluster/distribution of input sample

Motivation

Do we really have to give up those data?



▪ Problems

▪ Even iterative training, some data still fail to be approximated (red part in the figure)

▪ Single Approximator may overfit one cluster/distribution of input sample

▪ Motivation

▪ Multiple approximators may be complementary, and make invocation higher

Motivation

Do we really have to give up those data?



Background

Related works and Motivation

Proposed Method

Experiment Results

Conclusion

1

2

3

4

5



▪ Training Process

▪ The original input samples are used to train classifier C1 and approximator A1.

Multiple Cascaded Classifiers and Approximators (MCCA)

Training Process



▪ Training Process

▪ The original input samples are used to train classifier C1 and approximator A1.

▪ Feed the remaining input samples not yet to be recognized by C1 (Data nC) to classifier C2 and 
approximator A2.

Multiple Cascaded Classifiers and Approximators (MCCA)

Training Process



▪ Training Process

▪ The original input samples are used to train classifier C1 and approximator A1.

▪ Feed the remaining input samples not yet to be recognized by C1 (Data nC) to classifier C2 and 
approximator A2.

▪ Repeat until a specific pair of Cn and An cannot converge.

Multiple Cascaded Classifiers and Approximators (MCCA)

Training Process



▪ Inference Process

▪ If C1 approves, the input data are sent to A1.

Multiple Cascaded Classifiers and Approximators (MCCA)

Inference Process



▪ Inference Process

▪ If C1 approves, the input data are sent to A1.

▪ If C1 disapproves, the input data are sent to the next classifier C2.

Multiple Cascaded Classifiers and Approximators (MCCA)

Inference Process



▪ Inference Process

▪ If C1 approves, the input data are sent to A1.

▪ If C1 disapproves, the input data are sent to the next classifier C2.

▪ Repeat until Cn approves. 

Multiple Cascaded Classifiers and Approximators (MCCA)

Inference Process



▪ Inference Process

▪ If C1 approves, the input data are sent to A1.

▪ If C1 disapproves, the input data are sent to the next classifier C2.

▪ Repeat until Cn approves. 

▪ Demerit 

▪ The time spending on inference is too long

Multiple Cascaded Classifiers and Approximators (MCCA)

Inference Process



▪ Inference Process

▪ The multiclass-classifier predicts which approximator can approximate the 
input data.

Multiclass-classifier and Multiple Approximators (MCMA)

Inference Process



▪ Complementary training

▪ Test A1 with all data, produce the 
the label C1 for any input sample 
that A1 can safely approximate

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Complementary training

▪ Test A1 with all data, 
produce the the label C1 for 
any input sample that A1 
can safely approximate

▪ Test A2 with the remaining 
data, produce the the label 
C2 for any input sample that 
A2 can safely approximate

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Complementary training

▪ Test A1 with all data, produce the the
label C1 for any input sample that A1 
can safely approximate

▪ Test A2 with the remaining data, 
produce the the label C2 for any input 
sample that A2 can safely approximate

▪ Repeat until test An, the remaining 
input samples without any label are 
labeled as nC. 

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Complementary training

▪ Test A1 with all data, produce the the
label C1 for any input sample that A1 
can safely approximate

▪ Test A2 with the remaining data, 
produce the the label C2 for any input 
sample that A2 can safely approximate

▪ Repeat until test An, the remaining 
input samples without any label are 
labeled as nC. 

▪ Train the multiclass-classifier and 
approximators using iterative training.

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Competitive training

▪ Test A1 with all data, obtain the 
approximation error.

▪ Test A2 with all data, obtain the 
approximation error.

▪ …

▪ Test An with all data, obtain the 
approximation error.

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Competitive training

▪ Test A1 with all data, obtain the 
approximation error.

▪ Test A2 with all data, obtain the 
approximation error.

▪ …

▪ Test An with all data, obtain the 
approximation error.

▪ Generate the label for each data 
according to the lowest 
approximation error.

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Competitive training

▪ Test A1 with all data, obtain the 
approximation error.

▪ Test A2 with all data, obtain the 
approximation error.

▪ …

▪ Test An with all data, obtain the 
approximation error.

▪ Generate the label for each data according 
to the lowest approximation error.

▪ Train the multiclass-classifier and 
approximators using iterative training.

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Add a Controller to control the weight buffer inside the PE.

Hardware design

The overall NPU design

PE PE

PE PE

Bus
Scheduler

Classifier

Controller

Output FIFO

PE PE

PE PE

Bus
Scheduler

Output FIFO

CPU

Approximator

CacheCache

Input FIFOInput FIFO



▪ Add Controller to control multiple approximators.

▪ Weight buffer receives the signal from the controller, and then sechedule
approximators.

Hardware design

The detail PE design

Sigmoid

Accumulator
Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3



▪ Read data from 
Input FIFO.

Hardware design

Data flow

PE PE

PE PE

Bus
Scheduler

Classifier

Controller

Output FIFO

PE PE

PE PE

Bus
Scheduler

Output FIFO

CPU

Approximator

1

CacheCache

Input FIFOInput FIFO

Sigmoid

Accumulato
r

Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3case1:



▪ Conduct vector 
multiplication in PE.

Hardware design

Data flow

PE PE

PE PE

Bus
Scheduler

Classifier

Controller

Output FIFO

PE PE

PE PE

Bus
Scheduler

Output FIFO

CPU

Approximator

CacheCache

Input FIFOInput FIFO

Sigmoid

Accumulato
r

Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3case1:

2



▪ Controller send 
signal to CPU or 
Approximator.

Hardware design

Data flow

PE PE

PE PE

Bus
Scheduler

Classifier

Controller

Output FIFO

PE PE

PE PE

Bus
Scheduler

Output FIFO

CPU

Approximator

CacheCache

Input FIFOInput FIFO

Sigmoid

Accumulato
r

Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3case1:

3



▪ If approximator
invoked, fetch 
corresponding 
approximator’s
weight.

Hardware design

Data flow

PE PE

PE PE

Bus
Scheduler

Classifier

Controller

Output FIFO

PE PE

PE PE

Bus
Scheduler

Output FIFO

CPU

Approximator

CacheCache

Input FIFOInput FIFO

Sigmoid

Accumulato
r

Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3case1:

4

4



▪ Conduct vector 
multiplication in PE.

Hardware design

Data flow

PE PE

PE PE

Bus
Scheduler

Classifier

Controller

Output FIFO

PE PE

PE PE

Bus
Scheduler

Output FIFO

CPU

Approximator

CacheCache

Input FIFOInput FIFO

Sigmoid

Accumulato
r

Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3case1:

5

5



▪ Send back the result 
from PE to output 
FIFO.

Hardware design

Data flow

PE PE

PE PE

Bus
Scheduler

Classifier

Controller

Output FIFO

PE PE

PE PE

Bus
Scheduler

Output FIFO

CPU

Approximator

CacheCache

Input FIFOInput FIFO

Sigmoid

Accumulato
r

Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3case1:

6



▪ Load the weights layer by layer.

Hardware design

The detail PE design

Sigmoid

Accumulato
r

Registers

MAC

Input 
FIFO

Output FIFO

Address

Weight Buffer

Fetch

W reg I reg

A1

Cache

Layer1
Layer2
Layer1
Layer2
Layer1
Layer2

A1 A2 A3case1: case2:

Cache Layer1



Background

Related works and Motivation

Proposed Method

Experiment Results

Conclusion

1

2

3

4

5



• Compared with One-pass[ISCA’16] and Iterative training[DAC’17]

• 8 benchmark applications

Experimental setup



• Invocation increase 20%~30% on average.

• Invocation increase 40%+ in sobel or kmeans benchmark.

Experiment Results



• The approximation error is below the error bound in most benchmarks.

Experiment Results



• The average speedup is 1.23x compared with one-pass method.

Experiment Results



• The average energy reduction is 1.15x compared with one-pass method.

Experiment Results



Experiment

• Almost all samples have a corresponding approximator that can approximate it



Background

Related works and Motivation

Proposed Method

Experiment Results

Conclusion

1

2

3

4

5



Invocation-driven Neural Approximate Computing with a 
Multiclass-Classifier and Multiple Approximators

Zhuoran Song (宋卓然)
Professor Li Jiang (蒋力)
Advanced Computer Architecture Laboratory
Shanghai Jiao Tong University

Thanks for listening!


