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Approximate Computing

• Many applications are error tolerant

• Neural network (NN) is suitable to approximate a code block/function

• Amdahl law: performance limited by serial code

• NN has high parallelism, e.g., FPGA, ASIC, GPU

• An interesting facts: Neural network can approximate any continuous function 
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▪ Model based quality control for Approximate Computing [ISCA’15, ISLPED’16, DATE’16]

Related works

• Classifier：predict the data is “approximatable” or not

• Approximator (Accelerator)：approximately compute data at 
fast speed and low power consumption

• Error：the gap between the output of approximator and that of 
original program

With quality control architecture

NN-based

NN-based
Error < 𝜃 Error > 𝜃



▪ Model based quality control for Approximate Computing [ISCA’15, ISLPED’16, DATE’16]

▪ Question: 

How to train NN-based classifier and approximator?

Related works

• Classifier：predict the data is “approximatable” or not

• Approximator (Accelerator)：approximately compute data at 
fast speed and low power consumption

• Error：the gap between the output of approximator and that of 
original program

With quality control architecture
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▪ One-pass training[ISCA’16]

▪ Train Approximator and Classifier separately

▪ Ignore the correlation between the two NNs

Related works

One-pass training method



▪ Iterative training[DAC’17]

▪ Train Approximator and Classifier together using iterative training

▪ Classifier correlate with Approximator

▪ Data with low error is easy to predict

Related works

Iterative training



▪ Problems

▪ Even iterative training, some data still fail to be approximated (red part in the figure)

▪ Single Approximator may overfit one cluster/distribution of input sample

Motivation

Do we really have to give up those data?



▪ Problems

▪ Even iterative training, some data still fail to be approximated (red part in the figure)

▪ Single Approximator may overfit one cluster/distribution of input sample

▪ Motivation

▪ Multiple approximators may be complementary, and make invocation higher

Motivation

Do we really have to give up those data?
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▪ Training Process

▪ The original input samples are used to train classifier C1 and approximator A1.

Multiple Cascaded Classifiers and Approximators (MCCA)
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▪ Training Process

▪ The original input samples are used to train classifier C1 and approximator A1.

▪ Feed the remaining input samples not yet to be recognized by C1 (Data nC) to classifier C2 and 
approximator A2.

▪ Repeat until a specific pair of Cn and An cannot converge.
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▪ Inference Process

▪ If C1 approves, the input data are sent to A1.
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▪ Inference Process
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▪ Inference Process

▪ If C1 approves, the input data are sent to A1.

▪ If C1 disapproves, the input data are sent to the next classifier C2.

▪ Repeat until Cn approves. 

▪ Demerit 

▪ The time spending on inference is too long

Multiple Cascaded Classifiers and Approximators (MCCA)
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▪ Inference Process

▪ The multiclass-classifier predicts which approximator can approximate the 
input data.

Multiclass-classifier and Multiple Approximators (MCMA)

Inference Process



▪ Complementary training

▪ Test A1 with all data, produce the 
the label C1 for any input sample 
that A1 can safely approximate

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Complementary training

▪ Test A1 with all data, 
produce the the label C1 for 
any input sample that A1 
can safely approximate

▪ Test A2 with the remaining 
data, produce the the label 
C2 for any input sample that 
A2 can safely approximate

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Complementary training

▪ Test A1 with all data, produce the the
label C1 for any input sample that A1 
can safely approximate

▪ Test A2 with the remaining data, 
produce the the label C2 for any input 
sample that A2 can safely approximate

▪ Repeat until test An, the remaining 
input samples without any label are 
labeled as nC. 

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Complementary training

▪ Test A1 with all data, produce the the
label C1 for any input sample that A1 
can safely approximate

▪ Test A2 with the remaining data, 
produce the the label C2 for any input 
sample that A2 can safely approximate

▪ Repeat until test An, the remaining 
input samples without any label are 
labeled as nC. 

▪ Train the multiclass-classifier and 
approximators using iterative training.
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▪ Competitive training

▪ Test A1 with all data, obtain the 
approximation error.

▪ Test A2 with all data, obtain the 
approximation error.

▪ …

▪ Test An with all data, obtain the 
approximation error.
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▪ Competitive training

▪ Test A1 with all data, obtain the 
approximation error.

▪ Test A2 with all data, obtain the 
approximation error.

▪ …

▪ Test An with all data, obtain the 
approximation error.

▪ Generate the label for each data according 
to the lowest approximation error.

▪ Train the multiclass-classifier and 
approximators using iterative training.

Multiclass-classifier and Multiple Approximators (MCMA)

Training Process



▪ Add a Controller to control the weight buffer inside the PE.

Hardware design

The overall NPU design
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▪ Add Controller to control multiple approximators.

▪ Weight buffer receives the signal from the controller, and then sechedule
approximators.

Hardware design

The detail PE design
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▪ Read data from 
Input FIFO.

Hardware design

Data flow
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▪ Conduct vector 
multiplication in PE.

Hardware design

Data flow
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▪ Controller send 
signal to CPU or 
Approximator.

Hardware design

Data flow
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▪ If approximator
invoked, fetch 
corresponding 
approximator’s
weight.

Hardware design

Data flow
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▪ Conduct vector 
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▪ Send back the result 
from PE to output 
FIFO.

Hardware design

Data flow
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▪ Load the weights layer by layer.

Hardware design

The detail PE design
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• Compared with One-pass[ISCA’16] and Iterative training[DAC’17]

• 8 benchmark applications

Experimental setup



• Invocation increase 20%~30% on average.

• Invocation increase 40%+ in sobel or kmeans benchmark.

Experiment Results



• The approximation error is below the error bound in most benchmarks.

Experiment Results



• The average speedup is 1.23x compared with one-pass method.

Experiment Results



• The average energy reduction is 1.15x compared with one-pass method.

Experiment Results



Experiment

• Almost all samples have a corresponding approximator that can approximate it
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