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Abstract

In this tutorial, we focus on a niche area
of neural machine translation (NMT) that
aims to incorporate linguistics into differ-
ent stages in the NMT pipeline, from pre-
processing to model training to evaluation.
We first introduce the background of NMT
and fundamental analysis tools, such as
word segmenters, part-of-speech taggers,
and dependency parsers. We then cover
topics including 1) word/subword segmen-
tation, and character decomposition dur-
ing MT data pre-processing, 2) incorporat-
ing direct and indirect linguistic features
into NMT models, and 3) fine-grained lin-
guistic evaluation for MT systems. We re-
veal the impact of orthography, syntax, and
semantics information on translation per-
formance. This tutorial is mainly aimed
at researchers interested in the intersection
of linguistics and low-resource machine
translation. We hope this tutorial inspires
and encourages them to develop linguisti-
cally motivated high-quality MT systems
and evaluation benchmarks.

1 Relevence to the MT community

For machine translation (MT) tasks, purely data-
driven approaches have been dominant in recent
years, and in turn language knowledge-related ap-
proaches are being neglected. However, data is not
always sufficient for all 7, 000+ languages world-
wide. For NMT, a large number of parallel sen-
tences are required to supervise a system to learn
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how to translate. In contrast, systems with lim-
ited training data show very limited performance,
where leveraging external knowledge, such as lin-
guistic knowledge, becomes essential.

Language is a structural system that consists
of grammar and vocabulary. Grammar governs
units in vocabulary to convey meanings, which hu-
mans use to communicate. Many natural language
processing researchers believe that models with
the ability to imitate human behavior would pro-
duce natural outputs to communicate with humans.
This tutorial aims to cover the efforts that lever-
age linguistic knowledge to improve NMT, which
emerged from 2016. Our tutorial intends to answer
the question of

How to incorporate various linguistic knowledge
into the development and evaluation of MT sys-
tems?

To answer this, we will dive deep into three ar-
eas: 1) the role of word segmentation, subword
segmentation, and character decomposition dur-
ing pre-processing, 2) the impact of direct and in-
direct linguistic features on MT models, and 3)
fine-grained linguistic evaluation for NMT sys-
tems. This tutorial should benefit researchers who
are focusing on low-resource MT where the paral-
lel data is limited but linguistic analysis tools ex-
ist for the source or/and target language, which
is often the case. Therefore, most methods we
will introduce in this tutorial are highly general-
izable. In addition, this tutorial could be a good
starting point for increasing researchers’ interest
and awareness about linguistic methods in the neu-
ral era, building linguistic analysis tools for low-
resource languages, and exploring more effective
linguistic knowledge assisting methods even for
high-resource language pairs.



2 Tutorial Overview

This tutorial covers techniques incorporating lin-
guistic knowledge into NMT systems. We begin
with a brief introduction to MT and the connection
to linguistics and the NMT architecture (Vaswani
et al., 2017). We then cover how linguistic knowl-
edge can help NMT in different stages of the
pipeline, including pre-processing, training, and
evaluation.

In the pre-processing stage, we introduce how
to leverage linguistic information from word seg-
mentation (Tolmachev et al., 2018), subword seg-
mentation (Song et al., 2022), and character de-
composition (Zhang and Komachi, 2018) into in-
put and output data instead of purely compression-
based tokenization (Kudo and Richardson, 2018).
We also cover how to leverage data from related
languages (Amrhein and Sennrich, 2020).

For the model training stage, we discuss how
to integrate linguistic features such as morphol-
ogy and syntax information into the encoder and
decoder of the NMT models. First, we introduce
tools to generate linguistic features (Manning et
al., 2014). We then introduce how to utilize them
such as turning them into additional input embed-
dings (Sennrich and Haddow, 2016) and modify-
ing the model architecture to leverage hierarchical
sentence structure during encoding (Eriguchi et al.,
2016) and decoding (Eriguchi et al., 2017).

Lastly, we cover works that evaluate or
analyze the performance of linguistic phe-
nomenons (Avramidis and Macketanz, 2022; Voita
et al., 2019) for both the traditional NMT systems
and large language models (LLMs).

3 Tutorial Outline

Below we list an outline of the general structure of
the tutorial and only the most representative works
under each section for brevity.

1. Introduction to Neural Machine Translation
(20 minutes)

• Brief introduction to MT and its histori-
cal connection to linguistics.

• Overview of the basic NMT architec-
tures (Bahdanau et al., 2016; Vaswani et
al., 2017).

2. Linguistically Motivated Tokenization and
Transfer Learning (30 minutes)

• Word segmentation for languages with-
out spaces as word boundaries (Tol-
machev et al., 2018).

• Linguistically motivated subword seg-
mentation (He et al., 2020; Song et al.,
2022; Batsuren et al., 2021; Ataman et
al., 2017).

• Character decomposition (Zhang and
Komachi, 2018).

• Noisy tokenization for related lan-
guages (Maurya et al., 2024; Brahma et
al., 2023).

• Transfer learning from related lan-
guages (Amrhein and Sennrich, 2020;
Husain et al., 2024; Gala et al., 2023;
Dabre et al., 2021; Song et al., 2020;
Joshi et al., 2024).

3. Augmenting NMT Architectures with Lin-
guistic Features (60 minutes)

• Linguistic Analysis and Tools (Manning
et al., 2014; Qi et al., 2020; Kondratyuk
and Straka, 2019; Dyer et al., 2016; Ki-
taev and Klein, 2018).

• Augmented input feature (Sennrich and
Haddow, 2016; Chakrabarty et al., 2020;
Chakrabarty et al., 2022; Chakrabarty et
al., 2023; Currey and Heafield, 2018;
Currey and Heafield, 2019).

• Tree encoder that encode sentence in hi-
erarchical manner (Eriguchi et al., 2016;
Chen et al., 2017; Li et al., 2017).

• Syntax-aware representation (Niehues
and Cho, 2017; Zhang et al., 2019).

• Syntax-aware self-attention (Hao et al.,
2019; Bugliarello and Okazaki, 2020;
Pu and Sima’an, 2022).

4. Linguistically Aware Decoding (20 minutes)

• Tree decoder where output are gener-
ated hierarchically (Eriguchi et al., 2017;
Wang et al., 2018; Wu et al., 2017).

• Linearized trees (Aharoni and Goldberg,
2017; Nǎdejde et al., 2017).

• Structural template prediction (Yang et
al., 2020; Li et al., 2023).

5. Linguistically Motivated Evaluation (20 min-
utes)



• A fine-grained benchmark covering
more than 100 linguistic phenom-
ena (Macketanz et al., 2021; Avramidis
and Macketanz, 2022).

• Analysis of specific linguistic phenom-
ena (Müller et al., 2018; Voita et al.,
2018; Voita et al., 2019; Adebara et al.,
2022).

• Linguistic analysis of LLMs (GPT-4,
BLOOM, LlaMa) (Manakhimova et al.,
2023) .

6. Limitations and Future Directions (10 min-
utes)

• Languages without proper linguistic
analysis tools.

• Application to high-resource languages
in the era of LLMs.

7. Summary and Conclusion (5 minutes)

8. Discussion and Q/A (15 minutes)

Total time 180 minutes (excluding break)

Type of the Tutorial Cutting-edge

Target Audience and Size MT researchers and
engineers, especially those interested in low-
resource MT. 20–40 people.

Prerequisites This tutorial is primarily aimed at
researchers who have a basic understanding of MT.

Reading List

• NMT architecture (Vaswani et al., 2017).

• Linguistic knowledge as input features (Sen-
nrich and Haddow, 2016).

Diversity Considerations This tutorial covers
improving MT for low-resource language pairs.
Presenters have diverse backgrounds with different
native languages, some of which are low-resourced
ones. Our instructor will promote this tutorial on
social media to diversify our audience participa-
tion.

Special Requirements N/A

Ethical Considerations We do not anticipate
any ethical issues particularly regarding the topic
of the tutorial. Nevertheless, training data and MT
models may contain biases.

4 Tutorial Instructors

Haiyue Song (haiyue.song@nict.go.jp) is a Ph.D.
student at Kyoto University and a technical re-
searcher at the Advanced Translation Technology
Laboratory, National Institute of Information
and Communications Technology (NICT), Japan.
He received his B.S. from Shanghai Jiao Tong
University and his M.S. from Kyoto University.
His research interests include machine translation,
large language models, subword segmentation,
and decoding algorithms. He has MT and LLMs
related publications in TALLIP, AACL, LREC,
ACL, and EMNLP. Additional information is
available at https://shyyhs.github.io/.

Hour Kaing (hour kaing@nict.go.jp) is a re-
searcher at the Advanced Translation Technology
Laboratory, National Institute of Information and
Communications Technology (NICT), Japan. He
received his B.S. from Institute of Technology
of Cambodia, Cambodia, his M.Sc from Uni-
versity of Grenoble 1, France, and his Ph.D.
from NARA Institute of Science and Technology,
Japan. He is interested in linguistic analysis,
low-resource machine translation, language
modeling, and speech processing. He has publi-
cations in TALLIP, EACL, PACLIC, LREC, and
IWSLT. Additional information is available at
https://hour.github.io/.

Raj Dabre (raj.dabre@nict.go.jp) is a senior
researcher at the Advanced Translation Technol-
ogy Laboratory, National Institute of Information
and Communications Technology (NICT), Japan
and an Adjunct Faculty at IIT Madras, India. He
received his Ph.D. from Kyoto University and
Masters from IIT Bombay. His primary interests
are in low-resource NLP, language modeling and
efficiency. He has published in ACL, EMNLP,
NAACL, TMLR, AAAI, AACL, IJCNLP and
CSUR. Additional information is available at
https://prajdabre.github.io/.
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