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ABSTRACT

Neural approximate computing with fine-grain quality control is
promising to gain energy-efficiency and performance by the trade-
off the tolerable errors. Classifier-approximator hybrid architecture,
providing fine-grain control of qualities between approximate and
accurate execution, is widely used. However, they are not com-
patible to a heterogeneous computing platform, due to the large
communication overhead between the approximate and accurate
cores, and the large speed gap between them.

This paper proposes a novel hybrid approximate computing
architecture containing a multi-class classifier and multiple ap-
proximators (MCMA) with the corresponding iterative co-training
methods, which can optimize the invocation of the approxiamtor for
higher utilized of the accelerator, and minimiz the communication of
redistributing the unsafe-to-approxiamte data. We leverage high-
level synthesis tool to generate a microarchitecture with pipelined
data path for hiding the communication latency. The experiments on
off-the-shelf programable SoC show the superior of the proposed
architecture.
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{c} Proposed MCMA Architecture and its training method.

Figure 1. Concept (left column) and the Error Distribution of
output from the approximator (right column) for different

training methods

Figure 3: Data distribution using category C (left) and A

(right} in two continuous iterations from top to bottom
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A Novel Test Method for Metallic CNTs in
CNFET-Based SRAMs

Tianjian Li, Feng Xie, Xiaoyao Liang, Qiang Xu, Member, IEEE,
Krishnendu Chakrabarty, Fellow, IEEE, Naifeng Jing, and Li Jiang, Member, IEEE

Abstract—Static random access memories (SRAMs) built on
carbon nanotube field effect transistors (CNFETSs) are promis-
ing alternatives to conventional CMOS-based SRAMs, due to
their advantages in terms of power consumption and noise
immunity. However, the nonideal carbon nanotube (CNT) fab-
rication process generates metallic-CNTs (m-CNTs) along with
semiconductor-CNTs, leading to correlated faulty cells along the
growth direction of the m-CNTs. In this paper, we propose a
novel low-cost test solution to detect such faults. Instead of using
conventional March test to test each and every SRAM cell, we
selectively test certain SRAM cells and judiciously skip testing
other SRAM cells between the selected cells. To ensure high fault
coverage, we propose three jump test algorithms for differ-ent
CNFET-SRAM layouts. Moreover, we model m-CNT-induced
SRAM faults and characterize their distribution in the SRAM
array. Experimental results show that the proposed solutions are
able to achieve high fault coverage with low test cost.

Index Terms—Carbon nanotubes (CNTs), integrated circuit
testing, static random access memory (SRAM) cells.
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Abstract—RRAM crossbar consisting of memristor devices can Xi X2 X3
natu-rally carry out the matrix-vector multiplication; it thereby has
gained a great momentum as a highly energy-efficient accelerator for
neuro-morphic computing. The resistance variations and stuck-at Xi+ + X X2t + X2 X3+ +
faults in the memristor devices, however, dramatically degrade not | | | | |
only the chip yield, but also the classification accuracy of the neural-
networks running on the RRAM crossbar. Existing hardware-based
solutions cause enormous overhead and power consumption, while \%y \%;u, \%\ \% %
software-based solutions are less efficient in tolerating stuck-at faults ) ;
and large variations. In this paper, we propose an accelerator-friendly P T
neural-network training method, by leveraging the inherent self- \%\ %\ ) % %\ %
healing capability of the neural-network, to prevent the large-weight Y [ K
synapses from being mapped to the abnormal memristors based on
the fault/variation distribution in the RRAM crossbar. Experimental \% %\ \%\ %\ \%\
results show the proposed method can pull the classification

accuracy (10%-45% loss in previous works) up close to ideal level Fig. 1: The structure of a 1R RRAM crossbar
with < 1% loss. o '
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This work is partly supported by the National Natural Science Foundation of L
China (Grant No. 61602300, 61202026 and 61332001), Shanghai Science and 1a 'M K ™
Technology Committee (Grant No. 15YF1406000), Program of China National
1000 Young Talent Plan, NSF CNS-1253424, and a funding from Lynmax Fig. 3: Weight changing in the neural-network retraiming method:
Research. *Li Jiang is the corresponding author. (a) pre-trained weight; (b) fixing the weight connection; (c) after

retraining; (d) in the next iteration.
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ABSTRACT—A Carbon Nanotube field-effect transistor
(CNFET) is a promising alternative to a traditional metal-oxide-
semiconductor field-effect transistor (MOSFET) to overcome
the “Power Wall” challenge. However, CNFETs are inherently
subject to much larger process variation and thereby they can
incur a significant design cost to build high-performance
processors. Particularly, the large register files (RF) of SIMD
GPU-style processors suffer more from such process variations
because the number of critical paths are multiplied by the SIMD
width and thread count. In this paper, we first show that RF
organizations coupled with architectural techniques are critical
to RF performance under CNFET-specific variations. Second,
we propose several architectural techniques to mitigate the
performance degradation, leveraging distinctive char-
acteristics of CNFETs and unique features of SIMD processors.
Our experiments demonstrate that the average RF performance
is 53% higher than the worst design under variation and only
7% lower than the design with no variation.
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Fig. 1. Asymmetrically-correlated CNT density variation in CNFETs circuits:

(a) SEM image [7]; (b) Schematic in circuit level; (c) A conceptual view of

a GPU-like SIMD processor with different CNT growth direction.
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CNFET-Based High Throughput SIMD Architecture

Li Jiang, Member, IEEE, Tianjian Li, Naifeng Jing, Nam Sung Kim, Fellow, IEEE, Minyi Guo, Senior
Member, IEEE, Xiaoyao Liang, Member, IEEE

Abstract—Carbon Nanotube Field Effect Transistor (CNFET),
using the carbon nanotubes (CNTs) as the material for con-
ducting, is a promising alternative of CMOS technology to =|7
overcome the “power wall” issue. Recently, a microprocessor
solely based on CNFETs was fabricated and demonstrated, which
is a big step forward to the industrial practice. However, CNFETs
are inherently subject to much larger process variation or
manufacturing defects; thereby it may cause significant design
cost to build high performance processors. This is exacerbated in
the large register file (RF) architectures widely used in SIMD
architectures, e.g., GPU style processors, where the number of > )
critical paths are multiplied by the SIMD width and thread count. In Streaming
this paper, we seek cost-effective approaches to address the Multiprocessor
issues by judiciously exploiting the strong asymmetric spatial

correlation in the variation unique to the CNFET fabrication Scheduler
process. This paper presents a microarchitectural model to inde _I%
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techniques to mitigate the performance degradation and the
impact of CNT metallization, leveraging the distinctive CNFET

characteristics and the unique features in the SIMD processors. _CW'ET_l' CNFET 2
Experimental results verify the effectiveness of the proposed ! identical y Interconnect
techniques and demonstrate the great opportunity offered by this (b) (c)
new device technology.
Index Terms—CNFET, Asymmetric Spatial Correlation, SIMD Fig. 1. Asymmetrically-correlated CNT density variation in CNFETSs circuits:

(a) SEM image [7]; (b) Schematic in circuit level; (c) A conceptual view

Processor, Register File Architecture
9 of a GPU-like SIMD processor with different CNT growth direction.
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Defect Tolerance for CNFET-based SRAMs
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ABSTRACT—SRAMs based on carbon nanotube field-effect
transistors (CNFETSs) offer a promising alternative to conventional
SRAMs due to their high energy efficiency and low leakage.
However, the imperfect CNT fabrication process introduces high
defect rates and a unique defect distribution; these problems may
offset the power/performance benefits of CNFET-based SRAMs and
lead to yield degradation. We propose a redundancy architecture
with asymmetrically partitioned column blocks and the sharing of
spares among column blocks. We also present a analytical model to
characterize the distribution of faults, which can guide the design
exploration of the proposed redundancy architecture. Simulation
results highlight the accuracy of the proposed model, as well as the
efficiency and effectiveness of the redundancy architecture.
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Fault Clustering Technique for 3D Memory BISR

Tianjian Li’
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Abstract—Three Dimensional (3D) memory has gained a great
momen- tum because of its large storage capacity, bandwidth and etc. A
critical challenge for 3D memory is the significant yield loss due to the
disruptive integration process: any memory die that cannot be
successfully repaired leads to the failure of the whole stack. The repair
ratio of each die must be as high as possible to guarantee the overall
yield. Existing memory repair methods, however, follow the traditional
way of using redundancies: a redundant row/column replaces a
row/column containing few or even one faulty cell. We propose a novel
technique specifically in 3D memory that can overcome this limitation.
It can cluster faulty cells across layers to the same row/column in the
same memory array so that each redundant row/column can repair more
“faults”. Moreover, it can be applied to the existing repair algorithms.
We design the BIST and BISR modules to implement the proposed
repair technique. Experimental results show more than 71%
enhancement of the repair ratio over the global 3D GESP solution and
80% redundancy-cost reduction, respectively.
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IBOM: An Integrated and Balanced On-Chip
Memory for High Performance GPGPUs

Jianfei Wang, Qin Wang, Li Jiang, Chao Li, Xiaoyao Liang, Naifeng Jing

Abstract—GPGPU accelerated computing has revolutionized a broad range of applications. To serve between the ever-growing
computing capability and external memory, the on-chip memory is becoming increasingly important to GPGPU performance for
general-purpose computing. Inherited from the traditional CPUs, however, the contemporary GPGPU on-chip memory design is
suboptimal to the SIMT (single instruction, multiple threads) execution. In particular, the on-chip first-level data (L1D) cache thrashing,
resulting from insufficient capacity and imbalanced usage, leads to a low hit rate and limits the overall performance.

In this study, we reform the contemporary on-chip memory design and propose an integrated and balanced on-chip memory (IBOM)
architecture for high-performance GPGPUs. It first virtually enlarges the L1D cache size by an integrated architecture that exploits the
under-utilized register file (RF) with lightweight ISA, compiler and microarchitecture supports. Then with sufficient capacity, it is able to
improve the cache usage by a set balancing technique that exploits the under-utilized set resources. In our proposed IBOM design,
the register and cache accesses are amenable to normal pipeline operations with simple changes. It adequately exploits the size
inversion in GPGPU on-chip memory, and enables optimized utilization of the precious resources for higher performance and energy
efficiency with even smaller on-chip memory size. The experiment results demonstrate that the proposed IBOM design can offer an
average of 29.6% increase in L1D hit rate and in turn 3X performance improvement for the cache-sensitive applications.

Index Terms—GPGPU, Cache Thrashing, Register File, Integrated Memory, Set Balancing, Compiler, High Performance.
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In-growth Test for Monolithic 3D Integrated SRAM

Pu Pang1, Yixun Zhang1, Tianjian Li’
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Abstract—Monolithic three-dimensional integration (M3l) di-
rectly fabricates tiers of integrated circuits upon each other and
provides millions of vertical interconnections with inter-layer vias
(ILVs). It thus brings higher integration density and communication
capability compared with three-dimensional stacked integration
(3D-SI). However, the Known-Good-Die prob-lem haunting 3D-SI-
a faulty tier causes the failure of the entire stack—also occurs in
M3I. Lack of efficient test methodologies such as the pre-bond
testing in 3D-SI, M3l may have a more significant yield drop and
thus its cost may be unacceptable for main-stream adoption. This
paper introduces a novel In-growth test method for M3l SRAM. We
propose a novel Design-for-Test (DfT) methodology to enable the
proposed In-growth test on cell-level partitioned incomplete SRAM
cells. We also build a statistical model of cost and discover a
prospective judgement to determine whether or not to stop the
fabrication, in order to prevent from raising the cost of fabricating
more tiers upon the irreparable tiers. We find that a “sweet point”
exists in the judgement, which can minimize the overall cost.
Experimental results show the effectiveness of our proposed test
methodology.
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Jump Test for Metallic CNTs in CNFET-Based SRAM
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ABSTRACT O]

SRAMSs built on Carbon Nanotube Field Transistors (CN-FET) are - . oty 2l
promising alternatives to conventional CMOS-based SRAMs, due |

to their advantages in terms of both power con-sumption and C1 C: 2

noise margin. However, non-ideal Carbon Nan-otube (CNT)
fabrication process generates metallic-CNTs (m-CNTs) along with
semiconductor-CNTs (s-CNTs), rendering correlated faulty cells -
along the growth direction of the m-CNTs. Based on this , B es & Sensor amp
phenomenon, we propose a novel testing algorithm for detecting (a) Four SRAM cells (b) SRAM array
m-CNTs, .wherein consecutive write .and read operations jump Figure 1: CNFET-based SRAM layout.

over multiple cells rather than march-ing through each and every

cell, thereby signi cantly reducing the testing cost. The proposed

jump test can be invoked before the march test to screen out

those CNFET-SRAMs doomed to failure, and this can reduce the

subsequent test overhead. Experimental results show that the mm Faulty cell #ea0 Mark Faulty in different iteration
proposed solution is able to achieve a high fault coverage with Itri 1tr3 Itri itr3 r

much less testing cost. AR iﬁ 3
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On Microarchitectural Modeling for CNFET-based Circuits

Tianjian Li, Hao Chen, Weikang Qian, Xiaoyao Liang and Li Jiang
Shanghai Jiao Tong University, Shanghai, China
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Abstract—Carbon Nanotube Field-Effect-Transistors (CN-
FETs) show great promise to be an alternative to traditional
CMOS technology, due to their extremely high energy efficiency.
Unfortunately, the lack of control over the Carbon NanoTube
(CNT) growth process causes CNFET circuits to suffer from the
CNT count variation, which degrades the CNFET circuit
performance. Compared to the CMOS process variation, the CNT
count variation exhibits asymmetric spatial correlation. In this
work, we propose an analytic model that integrates the impact of
the asymmetric spatial correlation into the key microarchitectural
blocks. We use this model to evaluate the variations in circuit
performance for different layout styles and microarchitectural
parameters. We further explore the opportunity of leveraging the
asymmetric spatial correlation for performance enhancement.
Experimental results based on SPICE simulation and architec-tural
simulations showed the accuracy and effectiveness of the
proposed model.
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On Quality Trade-off Control for Approximate Computing Using
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ABSTRACT

Quality control plays a key role in approximate computing to save P I — Aceeleraor 5 — Accelerator A
the energy and guarantee that the quality of the computation out- 2 e 6 T frelemar

come satisfies users’ requirement. Previous works proposed a hy- Nat Aciviate ah

brid architecture, composed of a classier for error prediction and an ‘m"’“;.'--- " S

approximate accelerator for approximate computing using well L \ b i

trained neural-networks. Only inputs predicted to meet the quality n| T u| b B Threshold
are executed by the accelerator. However, the design of this hybrid ] -

architecture, relying on one-pass training process, has not been fully (a) Data distribution ratio on the (b) Approximation error VS. clas-

explored. In this paper, we propose a novel optimization framework. approximation error. si er threshold.

It advocates an iteratively training process to coordinate the train-ing Figure 1: A conceptual example.

of the classier and the accelerator with a judicious selection of
training data. It integrates a dynamic threshold tuning algorithm to
maximize the invocation of the accelerator (i.e., energy-efficiency)
under the quality requirement. At last, we propose an efficient algo-
rithm to explore the topologies of the accelerator and the classier
comprehensively. Experimental results shows significant improve-
ment on the quality and the energy-efficiency compared to the
conventional one-pass training method.
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RECoM: An Efficient Resistive Accelerator for
Compressed Deep Neural Networks
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Abstract— Deep Neural Networks (DNNs) play a key role in
prevailing machine learning applications. Resistive random-access
memory (ReRAM) is capable of both computation and storage,
contributing to the acceleration on DNNs by processing in memory.
Besides, a significant amount of zero weights is observed in DNNs,
providing a space to reduce computation cost further by skipping
ineffectual calculations associated with them. However, the irregular
distribution of zero weights in DNNs makes it difficult for resistive
accelerators to take advantage of the sparsity as expected efficiently,
because of its high reliance on regular matrix-vector multiplication in
ReRAM. In this work, we propose ReCom, the first resistive
accelerator to support sparse DNN processing. ReCom is an efficient
resistive accelerator for compressed deep neural networks, where
DNN weights are structurally compressed to eliminate zero
parameters and become hardware-friendly. Zero DNN activation is
also considered at the same time. Two technologies, Structurally-
compressed Weight Oriented Fetching (SWOF) and In-layer Pipeline
for Memory and Computation (IPMC), are particularly proposed. In
our evaluation, ReCom can achieve 3.37x speedup and 2.41x energy
efficiency compared to a state-of-the-art resistive accelerator.
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Sneak-Path Based Test and Diagnosis for 1 R RRAM Crossbar
Using Voltage Bias Technique
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ABSTRACT

Metal-oxide resistive random access memories with a single mem-
ristor device at the crosspoint (IR RRAM) is a promising alternative to
next generation storage technology due to their high density,
scalability, non-volatility and low power consumption. However, the
imperfect fabrication process introduces high defect rates of the
nanoscale memristor devices and leads to yield degradation. In ad-
dition, sneak-paths occur in IR RRAM crossbar that can jeaperdize the
normal read/write operation. Previous work proposes voltage bias
technique to eliminate the sneak-paths. Instead, in the paper, we
leverage voltage bias to manipulate various distribution of sneak-paths
that can screen one or multiple faults out of a 4 x 4 region of
memristors at once, and consequently diagnose the exact location of
each faulty memristor within three write-read operations. The SPICE
simulation results highlight the effectiveness and efficiency of the
proposed test method.
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Figure 1: {a) An example 1T1R RRAM crossbar; (b) An exam-
ple 1R RRAM crosshar and the example sneak-path.
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Figure 2: An example for sneak-path control: (a) A read op-
eration affected by sneak-path; (b) Sneak-path elimination
with an uniform level of voltage bias; (c) one and (d) two mag-
nificd sneak-paths; (¢} Another example of magnified sneak-
paths; () Patterns are programmed in the form of pulse with
different voltage levels, distributed from -Vdd to Vidd.



Timing-Driven Placement for Carbon Nanotube Circuits
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Abstract—Carbon nanotube field effect transistors (CNFETSs),
which use carbon nanotubes (CNTs) as the transistor channel, are
promising substitution of conventional CMOS technology. However,
due to the stochastic assembly process of CNTs, the number of CNTs
in each CNFET has a large variation, resulting in a vast circuit delay
variation and timing yield degradation. To overcome it, we propose a
timing-driven placement method for CNFET circuits. It exploits a
unique feature of CNFET circuits, namely, asymmetric spatial
correlation: CNFETs that lie along the CNT growth direction are
highly correlated in terms of their electrical properties. Our method
distributes CNFETs of the same critical paths to different rows
perpendicular to the CNT growth direction during both global and
detailed placement phases, while optimizing the timing of these
critical paths. Experimental results demonstrated that our approach
reduces both the mean and the variance of circuit delay, leading to an
improvement in timing yield.
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Fig. 3: Gates of the chossncritical path allocated to the same and the different
CHT rows.
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