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Abstract—Neural approximate computing gains enormous
energy-efficiency at the cost of tolerable quality-loss. A neural
approximator can map the input data to output while a classifier
determines whether the input data are safe to approximate with
quality guarantee. However, existing works cannot maximize the
invocation of the approximator, resulting in limited speedup and
energy saving. By exploring the mapping space of those target
functions, in this paper, we observe a nonuniform distribution of
the approximation error incurred by the same approximator. We
thus propose a novel approximate computing architecture with
a Multiclass-Classifier and Multiple Approximators (MCMA).
These approximators have identica network topologies, and thus
can share the same hardware resource in an neural processing
unit(NPU) clip. In the runtime, MCMA can swap in the invoked
approximator by merely shipping the synapse weights from the
on-chip memory to the buffers near MAC within a cycle. We also
propose efficient co-training methods for such MCMA architec-
ture. Experimental results show a more substantial invocation of
MCMA as well as the gain of energy-efficiency.

I. INTRODUCTION

Approximate computing is a promising technique to gain
energy efficiency with tolerable losses of computation quality
for specific error-tolerant applications, such as recognition,
mining, and search (RMS) applications. Existing works strive
to reduce the computation effort by precision scaling [1],
loop perforation [2], memorization [3]; others try to minimize
the performance hurdle by skipping memory references [4].
Approximate computing can also gain more parallelism using
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strategies like lowering the precision of intermediate compu-
tations [5], memorization [6], etc. The reported power saving
is usually within 5%−40% [7], depending on the application,
the approximation technique, and the acceptable error.

Neural networks (NNs) are suitable for general approxi-
mate computing. First, NNs are inherently utilized in many
error-tolerant applications, such as real-world pattern recogni-
tion [8]. Second, NNs are theoretically universal approxima-
tors to fit any continues function [9]. Previous works mimic the
functions of approximable code regions [10] using NNs. Third,
NNs expose enormous parallelism for performance/energy
benefits, in favor of the booming development of hardware
accelerators [11]. The same accelerator can approximate var-
ious functions by merely changing the NN topologies and
weights. Above advantages make NNs a principal candidate
in approximate computing, namely approximators.

Quality control is essential in approximate computing to
identify those safe-to-approximate work loads [12]. On one
hand, various techniques employ high-level, application spe-
cific light-weight checks(LWCs) to estimate the quality of the
approximation output [13]. These works then advocate a roll-
back or online tuning mechanism to guarantee the computation
reliability. On the other hand, a proactive strategy is to predict
whether the load is safe-to-approximate or not using statistical
and learning models [12], [14]–[17].

Approximate computing framework that deploys two neural
networks can further optimize the approximation quality and
invocation [18], [19]. In these works, one neural network
is trained as a classifier, to differentiate safe-to-approximate
input from others, while the other as an approximator. It
is challenging to train two neural networks because of the
correlation between them, but we advocate this approximate
computing framework in this paper due to the superiority of
neural networks.

Existing neural approximate computing with quality control
strives to optimize two objectives simultaneously: minimizing
the approximation error and maximizing the invocation of
approximator (the probability of invoking the approximator
to gain energy efficiency). In this work, we argue that these
two goals may contradict each other. Based on the principle of



approximate computing, it is not necessary to further reduce
the approximation error when the error is lower than the
error bound. Instead, we should maximize the invocation of
approximator. Because more input invokes the accelerator—
ASIC [10], FPGA [20] or NVM [21], [22] etc.—rather than
CPU, more energy efficiency we gain. Therefore, we advocate
the invocation-driven design for approximate computing. In
this paper, we propose a novel approximate computing archi-
tecture to maximize the invocation of approximate accelera-
tors. The key idea is to orchestrate multiple approximators
which fit more input data. The contribution of this work is
summarized as below:

• We investigate two compound structures of approximate
computing: i) Multiple cascaded classifiers and approxi-
mators (MCCA) architecture that naturally extends from
the existing methods; ii) Multiclass-Classifier and Multi-
ple Approximators architectures (MCMA) that processes
much faster than MCCA.

• We investigate two co-training methods, i.e. complemen-
tary and competitive training, for multiple approximators
in the compound structure. Each approximator can fit a
distribution of the input data—a partition in input space—
and the whole compound structure can theoretically fit all
samples in the input space thus maximize the invocation
of approximate accelerators.

• We implement the compound approximate computing
structures in the existing neural processing unit(NPU)
design. Based on the investigation, the proposed ap-
proximate computing architecture can achieve superior
speedup without hardware or performance overhead.

The rest of the paper is organized as follows: section II
shows related works and motivation. Proposed approximate
computing architectures are described in section III. Section IV
shows the experiments, and section V concludes this paper.

II. RELATED WORKS AND MOTIVATION

A. Model based quality control for Approximate Computing

Various approximate computing methods use statistical or
learning models to predict the approximation errors. Rumba et
al. [12] propose decision trees and linear models for predicting
the error in the runtime. Wang et al. [15] propose a reinforce-
ment learning method to determine when and how to rollback
for occasional large errors with a minimum cost. However, due
to the bias of input feature space, some approximate outputs
cannot satisfy the quality requirement. These works give up
screening the input data on the accelerator call site, resulting
in unnecessary rollbacks.

Proactive quality control mechanisms use predictors to
determine the input shifted to the accelerator and invoke the
accelerator. In [16], a Bayesian network learns the cost and
error models of an optimization problem offline and deter-
mines the quality control knob by solving this optimization
problem. Rahimi et al. [17] selectively reduce and dynamically
tune the precision, subjecting to a statistical quality knob;
consequently, an approximator within the fixed area budget can

Fig. 1. A conceptual view of fitting the data samples with different neural
approximate computing architectures.

accommodate more parallel approximate kernels. These works
strive to maximize the invocation of a single approximation
scheme. The upper limit of a given approximation scheme,
e.g., an 8-bit precision approximate-multiplier, undoubtedly
circumscribes the potential of safe-to-approximate input in
the input space, preventing us from exploring more energy
efficiency.

B. Approximate Computing with two neural networks

Mahajan et al. [18] present the first approximate computing
framework that employs two neural networks as the classifier
and the approximator, respectively. They make the best effort
to train an approximator using the input and output data of
the target function for approximation. Then, they test the
approximator using the same input data and generate the
approximation output. Comparing the approximation error
with the error bound can tell us whether the input data is
safe-to-approximate or not, which serves as labels to train the
classifier. Their results show the NN-based predictor is better
than the table-based predictor regarding prediction accuracy.
However, this work ignores the correlation between the two
neural networks. The capability of the classifier is constrained
by the approximator because the approximator produces the
“label” in the training sample of the classifier.

Consequently, Xu et al. [19] propose an iterative training
method for the classifier and approximator. The fundamental
idea is to repeat the training process in [18], retrain the ap-
proximator using only the safe-to-approximate input identified
by the classifier, and then retrain the classifier again using the
new “label” produced by the approximator. As the iterative
training goes on, the approximation error of the approximator
and the prediction error of the classifier keep decreasing.
However, this method is weak in enhancing the invocation of
the approximator because the amount of safe-to-approximate
data shrinks after several iterations.

C. Motivation

Without the loss of generality, we use a simple but moti-
vational example to point out the remaining problem of the
existing neural approximate computing framework involving
two neural networks. In [18], the approximator (A1) and the
classifier (C1) are trained separately in one pass, as shown
in Fig. 1(a). The optimization targets of A1 and C1 may
be mismatched. The A1 strives to fit “all” possible input
samples, which makes it challenging for C1 to differentiate



the safe-to-approximate data from others. By the iterative
retraining of A1 using the safe-to-approximate input samples
recognized by C1, and vice versa, as shown in Fig. 1(b),
A1 and C1 can coordinate their optimization objectives [19].
A1 evolves to provide more accurate approximation output,
while C1 becomes more robust to discriminate those safe-to-
approximate data from others. However, the approximator after
sufficient training may overfit one cluster/distribution of input
sample. Such bias also pushes away other input samples from
the approximation function. The input sample pushed out of
the “error bound” in the view of the classifier results in a
degraded invocation of the approximator.

Motivated by this, the primary target of this work is to
maximize the invocation of the approximator (salvage the
abandoned safe-to-approximate data), by initiating multiple
approximators. As shown in Fig. 1(c), each approximator (e.g.,
A1 and A2) concentrates on fitting a reasonable amount of data
samples that are easily recognized by the classifiers (e.g., C1,
C2). The compound structure can cover much more data in
the input space that maximizes the overall invocation. The
rest of this paper focuses on designing a compound structure
of neural networks and their training methods.

III. PROPOSED APPROXIMATE COMPUTING
ARCHITECTURE

In this section, we analyze and interpret different data se-
lection strategies based on iterative training method [19]. The
observation inspires us to develop two compound structures of
neural networks for our approximate computing architecture.
At last, we deploy our architectures in hardware design based
on a typical Neural Processing Unit design [10].

A. Clustering of safe-to-approximate input sample

It is challenging to optimize the invocation of the ap-
proximator because there is no place to put the invocation
into the loss functions of both neural-networks. Two neural
networks have two viewpoints upon the input samples. We
can select training data predicted as safe-to-approximate by
the classifier in the current iteration, denoted as category C,
or choose samples whose approximation error–resulting from

(a) Training with category C. (b) Training with category A.
Fig. 2. Distribution of training data for approximator in iterative training. C1

and Cn mean classifier in the first and the nth iteration. The same for A1

and An.

the approximator–is within the error bound, denoted as cat-
egory A. Such difference is due to the mismatch between
the viewpoints of the two neural networks. The previous
work [19] simply chooses the safe-to-approximate samples,
on which the two neural networks agree (denoted as “AC”).
Alternatively, we discover the clustering effect of the safe-to-
approximate samples that can help us increase the invocation
of the approximator.

The approach to such discovery is described as follows.
Given a typical RMS application, we apply iterative training
multiple times, and plot the input samples: safe-to-approximate
samples are in green color. We further track the change of the
plots in the final iteration and color the safe-to-approximate
input samples in light green. As depicted in Fig. 2 (a) and
(b), the safe-to-approximate input samples are clustered when
selecting the training data using C in the iterative training
process; the sphere of these clusters gradually expands in the
later iterations of training. When choosing A in each iteration
of training, on the contrary, the safe-to-approximate input
samples are scattered into the input space as small pieces. It
is much easier for the classifier to discriminate the clustered
safe-to-approximate samples. It is also easier for approximator
to fit the clustered safe-to-approximate samples.

For those samples out of the clusters, we can remedy those
abandoned samples using additional approximators. Therefore,
we orchestrate multiple approximators in the approximate
computing architecture and develop the training methods to
incline each approximator to a different cluster of safe-to-
approximate samples, as described in the next section.

B. Multiple Cascaded Classifiers and Approximators (MCCA)
The key idea to increase the invocation of approximator

is to consecutively employ additional approximator for the
remedy of the input samples abandoned in previous iterations.
Meanwhile, a question emerges: how many approximators are
enough to cover the majority of the input space?

To answer this question, we propose the Multiple Cascaded
Classifiers and Approximators (MCCA) structure by cascading
multiple pairs of the approximator-classifier structure proposed
in the iterative training method. Fig. 3(a) illustrates an example
MCCA structure and the training process. MCCA structure is
composed of cascaded pairs of classifier and approximator,
each of which sequentially divides input data space into
safe-to-approximate and unsafe-to-approximate clusters. In the
beginning, the original input samples are used to train the first
pair of the classifier-approximator structure, denoted as A1 and
C1. The training process is similar to the iterative training [19],
except that we select the training samples using category C
to train the C1-A1 pair in the second iteration. After the
above training process converges, we feed the remaining input
samples not yet to be recognized by C1 (Data nC) to the
second pair C2-A2. Such process continues until a specific
pair of Cn and An cannot converge. The remaining unsafe-to-
approximation data should enter CPU for precise computation.

At run-time, the approximate computing architecture with
MCCA structure also consumes the input loads in a cascaded



(a) Training. (b) Execution.

Fig. 3. Proposed MCCA architecture and its training process.

manner. The execution process is shown in Fig. 3(b). A1

approximates the input data based on the prediction of C1. If
C1 disapproves, the input data are sent to the next pair C2-A2.
The input data are finally executed in CPU if rejected by all the
classifiers. Obviously, MCCA is too time consuming that may
offset the speedup resulting from the approximate accelerator.
We solve this problem by proposing a more efficient structure
in the next section.

C. Multiclass-classifier and Multiple Approximators (MCMA)

We propose a “parallel” compound structure with a
multiclass-classifier and multiple approximators (denoted as
MCMA). Given the input samples at the runtime, as shown in
Fig. 4(a), the multiclass-classifier predicts which approximator
can generate a safe-to-approximate result. The approximator
with the highest confidence in the prediction consumes the
input sample. A critical question is how to train such a paralled
structure.

We propose two data allocation mechanisms to train the
MCMA structure. For Complementary mechanism, input sam-
ples are fed into all the approximators from A1 to An serially.
The latter approximator is trained using the input samples
that previous approximators fail to approximate. After the
initialization, the training process of MCMA structure adopts
the iterative training method. In each iteration afterward, we
generate the label for training the multiclass-classifier using
the complementary mechanism: A1 tests all the input samples
and produces the label C1 for any input sample that A1

can safely approximate. Otherwise, no label is assigned to
that input sample. Subsequently, A2 tests the remaining input
samples without any label and produces label C2 for the

(a) Execution. (b) Training process.

Fig. 4. Proposed MCMA architecture and its training process.

sample that is safe-to-approximate for A2. This procedure
continues until all the approximators have finished the testing.
The remaining input samples without any label are labeled
as nC. We then train the multiclass-classifier using all the
input samples with labels. In the next iteration, we test the
derived classifier using all the input samples. The resulting
prediction, e.g., Ci, with the highest confidence indicates the
most suitable approximator, e.g., Ai, to approximate the input
sample. The multiclass-classifier distributes each input sam-
ples to its most suitable approximate and eventually partitions
the input space into n + 1 territories. Each of the n approxi-
mators takes the samples in its territory for the next iteration
of training. The basic idea of the complementary allocation
mechanism is similar to AdaBoost algorithm [23]. However,
the execution process of the MCMA structure is more efficient
than that of an AdaBoost algorithm: The MCMA structure
derives the final approximation from one approximator, while
an AdaBoost algorithm derives the result by voting from all
the approximators.

For the Competitive mechanism, in the first iteration, we
assign all the input samples to all the approximators in
parallel. All the approximators compete with each other to
fit as many input samples as possible. Each approximator
may bias different distribution of the input samples due to
the randomness in the training samples.

Furthermore, we can vary the hyper-parameters in the neural
networks such that each approximator can reach different
local minima. After the initialization, we competitively train
the multiclass-classifier: each approximator tests each input
sample and generates the approximation error. We generate the
label for this sample according to the approximator deriving
the lowest approximation error and use this label to train the
multiclass-classifier. Then, we test the multiclass-classifier and
assign the samples to the approximator that the classifier trusts
the most. The same procedure continues iteratively.

Note that multiple approximators may have the similar con-
fidence to approximate the same input sample. Their territories
may thus overlap to each other. After some iterations, the
bias of each approximator is reinforced, and the multiclass-
classifier can easily distinguish the territories of different
approximators.

D. Hardware design of MCMA structure

The MCMA architecture consists of more than one approxi-
mators. Thus, we propose an NPU design that provides instant



(a) The NPU structure and the data flow of MCMA. (b) Structure of a PE.

Fig. 5. Proposed NPU Architecture.

switch among different approximators and enlarges the degree
of parallelism. As shown in Fig. 5(a), the NPU consists of
identical tiles of computing resource based on [10]. Each tile
includes multiple Processing Elements (PEs), Input/output FI-
FOs, and a Cache, connected by an internal bus. PE calculates
the output of one neuron at a time in the inference task of the
neural network. The bus scheduler schedules the data from
input FIFO to PEs and from PEs to output FIFO through the
data bus. It also schedules the weights of the neural network
from the cache to each PE.

The structure of the PE, as shown in Fig. 5(b), includes
a weight buffer, a fetch unit that reads the weights from the
specific addresses of the weight buffer and sends the weights to
W register. The I register stores the input sample transferred
from Input FIFO. When both values arrive in the registers,
a Multiply Add Accumulator unit carries out the arithmetic
computation. The result is activated by the activation unit (e.g.,
Sigmoid) and sent to Output Buffer. We can dynamically
allocate the classifier and approximators to the tiles according
to the scale of resource and neural networks. Considering the
multiple approximators, we deploy a controller which receives
the prediction result from the classifier and sends the control
signal to the approximator.

Fig. 5 shows the data flow. The weights of the classifier are
loaded in the initialization stage. In stage 1, data are transferred
from the input FIFO to each PE of the classifier. In stage
2, each PE calculates the output of one neuron and put the
output in the output FIFO. In stage 3, the result is sent to
the controller from the output FIFO. In stage 4, the controller
invokes the approximator if the data are safe-to-approximate,
otherwise invokes the CPU. Then in stage 5, the input data
are transferred to PEs in the approximator for computation. In
stage 6, the results are sent back to the output FIFO.

Our architecture needs to support Weight switch among
different approximators, as shown in Fig. 5(b). Three scenarios
may occur according to the size of the neural networks. Case 1:
the weight buffer can store all weights of the approximators.
No weights need to be loaded from the cache. Case 2: the

weight buffer is not large enough to store the weights of one
approximator. In this case, either the MCMA method or any
other NPU needs to load the weights layer by layer. So there
is no extra overhead compared with previous methods. Case 3:
the weight buffer is large enough for storing one approximator
but not enough for storing all approximators. In this case, when
the prediction of the ith sample is different from the i − 1th
sample, the approximator loads the weights from cache to the
weight buffer.

In summary, the MCMA architecture can adapt to any
existing NPU design such as [10] by adding a simple controller
for switching the approximations. The data movement between
the NPU and other components, e.g., CPU or DMA, remains
the same as the original NPU design.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

In the experiment, we compare the proposed MCCA
and MCMA architectures, to the conventional classifier-
approximator architecture (denoted as Iterative [19] and one-
pass [18]). For all classifiers and approximators, we use mul-
tilayer perceptrons with backpropagation algorithm. MCCA,
MCMA and Iterative are trained with five iterations. And one-
pass with one iteration. In the training, we use RMSprop
optimizer and set epoch as 1500.

We select eight benchmark applications from [10] and
GNU GSL scientific computing library as shown in Fig 6.
The first seven benchmarks are identical from the previous
paper [10]. These benchmarks are for comparison among
different methods. The Bessel benchmark has two-dimensional
input, thus we use images to show the data distribution. In the
table, the topology of the neural network is described by the
number of neurons in each layer. For example, 6 → 8 → 1
means there are 6 neurons in the input layer, one hidden layer
with 8 neurons and an output layer with one neuron. In every
benchamrk, the approximators and classifiers in all methods
are of the same topology, except the last layer of the classifiers
in MCMA method, due to the multi-classification task. The



Fig. 6. Benchmark description

network topologies are selected by balancing between the
performance and the structure size.

We use invocation of classifiers and root-mean-square er-
ror(RMSE) of the data approximated by the approxima-
tor(simply we call it error) to measure our models. The error
bound means the quality requirements for the output. The
lower the error bound, the higher the quality requirement. We
vary the error bounds and show the results considering the
various quality requirements among different applications. We
also visualize the statistics of the data distribution.

B. Results and analysis
Compared with previous methods, our architecture has i)

higher invocation of the approximators while keeping the error
under the threshold; ii) higher speedup and energy efficiency.

Fig. 7(a) and Fig. 7(b) show the “invocation” and “ap-
proximating error” in different benchmarks among one-pass,
iterative and two types of MCMA architectures. We normalized
the approximation error with respect to the error bound. In
average, the MCMA methods have greater invocation than the
one-pass method by 27% and less “approximation error” by
10%. In kmeans and Black-Scholes, our methods outperform
the previous methods in invocation by 40%(from 50% to 90%)
while the “approximation error” remains unchanged. In most
benchmarks, the approximation error is below the error bound
which means the quality control is good except the jmeint
benchmark. The FFT bench is regarded as "not suitable for
approximation" and thus all the methods show no difference.

Fig. 7(c) shows the detailed results on the Black-Sholes
benchmark by varying error bound. Invocation of all the
methods increases as the error bound arises. When the user
requires a tighter error bound, compared with other methods,
the drop of invocation of our proposed architecture is the
smallest. In other words, the proposed architecture is more
desired for those approximate critical applications. In most
cases, the MCMA architecture has a higher invocation of the
approximator than the MCCA. Also since the MCCA architec-
ture is cascaded which is not time and energy efficient, the
rest of the experiment will focus on the MCMA architecture.

Fig. 8 shows the “speedup” and “energy reduction” in
different benchmarks corresponding to the invocation and error
in Fig. 7(a) and Fig. 7(b). The results are normalized respect
to the one-pass method. Due to the space limit, we estimate
the performance of MCMA by scaling the performance of
NPU in [10] based on the invocation of NPU. This is a
valid estimation as the proposed MCMA architecture is merely
the same as original NPU design. The average speedup is

(a) Comparisons on the invocation across different benchmark functions.

(b) Comparisons on the approximation error normalized to the error bound.

(c) Comparisons on the invocation varying the error bound in Black-Sholes.

Fig. 7. Results of invocation and error.

about 1.23× and the energy reduction is about 1.15× in
both competitive MCMA and complementary MCMA. The



(a) Comparison on speedup normalized to one-pass method.

(b) Comparisons on energy reduction normalized to one-pass method.

Fig. 8. Comparisons on speedup and energy reduction.

computation gap between CPU and NPU is large, so the
speedup is largely determined by the invocation for those
computation-bound applications. For those communication-
bound applications, neural approximate computing may not
be suitable. In the sobel benchmark, the invocation of MCMA
method is much larger than the one-pass method, leading to
significant speedup and energy reduction.

Fig. 9. Comparisons on Invocation between Complementary and Competitive
allocation schemes in MCMA.

Fig. 9 illustrates the invocation rate for two allocation
schemes in the iterative training process of the MCMA ar-
chitecture using Bessel bench. Competitive scheme involves

(a) Distribution of data samples of three approximators.

(b) Relative error derived by the three approximators.

Fig. 10. Data distribution of the Bessel bench using the MCMA architecture.

less invocation in the beginning, but it keeps progressing in
the following iterations and outperforms the complementary
scheme. We also observe that the invocation of approximator
using complementary allocation scheme drops in the second it-
eration. A possible explanation is that the multi-class classifier
begins to work until the second iteration. The classifier shuffles
the partition of the training data dramatically and redistributes
them to all the approximators. The approximators strive to
adapt to this drastic change of training data.

Because Bessel bench has two-dimensional input, it is easy
to show the data distribution with graphs. Without loss of
generality, we studied the data distribution of Bessel bench
by plotting the data samples of our three approximators. We
first map these samples to a 2-dimension feature space with
two input dimension of Bessel function as the X- and Y- axis,
as shown in Fig. 10 (a). Each approximator in the MCMA
architecture has its own specialty in fitting a cluster of samples.
To plot the errors (Z-axis) of the above data samples, we
build a 3-dimension distribution of the samples, as shown in
Fig. 10 (b). We see that each approximator generates results
with a large error in some area. However, with the cooperation
of the multi-class classifier, all the approximators approximate
a large portion of data samples under the error bound.

Fig. 11 shows the distribution of data samples on approx-
imation error in the one-pass, iterative, and MCMA method.
In the legend, A means safe-to-approximate data, C means



(a) one-pass method (b) Iterative method (c) MCMA method

Fig. 11. Data distribution of the Bessel bench along the approximation error

data predicted acceptable by the classifier. So AC means true
positive, nAnC for true negative, AnC means false negative,
and nAC for false positive. In Fig. 11 (a), after using one-
pass, many data samples stick around the error bound(dashed
line). This phenomenon indicates the hardness to classify
the safe-to-approximate data from the others. With iterative
method, as shown in Fig. 11 (b), the approximator evolves to
provide a more accurate output of those accepted data (the
green portion); while the classifier becomes more robust to
discriminate those unsafe-to-approximate data(fewer samples
around the error bound). In Fig. 11 (c), Ai means error
distribution curve of the ith approximator. We can see the
first approximator covers most of the data and the other two
approximators cover the rest part. Our architecture dramati-
cally increases the true invocation rate (true positive with label
AC). The MCMA architecture almost recognizes all the safe-
to-approximate samples (low false negative rate), resulting in a
high recall of the classifier. In fact, if we draw a classification
hyperplane, the hyperplane is almost vertical and approaches
to the error bound, indicating a near-optimal classifier.

V. CONCLUSION

Neural approximate computing with fine-grain quality con-
trol is promising to gain energy-efficiency and performance by
the trade-off the tolerable errors in RMS applications. In this
paper, we propose new methods to improve the invocation
of approximator. Based on the analysis of data distribution,
we propose novel approximate computing architectures by
orchestrating multiple classifiers and approximators; the cor-
responding training methods and hardware design are also de-
scribed. The proposed architectures can dramatically improve
the invocation of the approximate accelerator with quality
guarantee for larger gain of energy-efficiency.
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