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« Many applications are error tolerant

* Neural network (NN) is suitable to approximate a code block/function
« Amdanhl law: performance limited by serial code
* NN has high parallelism, e.g., FPGA, ASIC, GPU

« An interesting facts: Neural network can approximate any continuous function
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Related works
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= Model based quality control for Approximate Computing [ISCA’15, ISLPED’16, DATE’16]

» Classifier : predict the data is “approximatable” or not

» Approximator (Accelerator) : approximately compute data at
fast speed and low power consumption

» Error : the gap between the output of approximator and that of @
original program NN-based
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Related works M

@ Error > 0

NN-based
= Question: Error < 6
How to train NN-based classifier and approximator? : 5 .. |
Accelerator
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With quality control architecture




Related works
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= One-pass training[ISCA’16]
= Train Approximator and Classifier separately
= Ignore the correlation between the two NNs
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Related works

= lterative training[DAC’17]

= Train Approximator and Classifier together using iterative training

= Classifier correlate with Approximator

= Data with low error is easy to predict
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Motivation e

= Problems
= Even iterative training, some data still fail to be approximated (red part in the figure)

= Single Approximator may overfit one cluster/distribution of input sample

— End of training
Very low error

Easy to classify

Do we really have to give up those data?

Distribution of Output

o

Error
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Motivation e

= Motivation

= Multiple approximators may be complementary, and make invocation higher

— End of training
Very low error

Easy to classify

Do we really have to give up those data?

Distribution of Output
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Multlple Cascaded Classmers and Approximators (MCCA)
AT =mmd

= Training Process

= The original input samples are used to train classifier C1 and approximator A1.

Iterative Training

oI [0 Train | Latl] Test
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Train Test Test

Training Process



Multiple Cascaded Classifiers and Approxim%;%s%(M%pA)

= Training Process

= Feed the remaining input samples not yet to be recognized by C1 (Data nC) to classifier C2 and

approximator A2.

Iterative Training
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Train
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Training Process
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Multiple Cascaded Classifiers and Approxim%;%fs%(ﬂﬁpA)

= Training Process

= Repeat until a specific pair of Cn and An cannot converge.

Iterative Training

Iterative Training

Train Test :
Train Test Test

Training Process




Multiple Cascaded Classifiers and Approxim%;%s%(M%pA)

= Inference Process

= |f C1 approves, the input data are sent to A1.

Safe to approximate?

Data g NS “Ho™ o KB
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Inference Process




Multiple Cascaded Classifiers and Approxim%;%s%(M%pA)

= Inference Process

= If C1 disapproves, the input data are sent to the next classifier C2.

Safe to approximate?

Data g NS “Ho™ o KB

s s

Inference Process




Multiple Cascaded Classifiers and Approxim%;%s%(M%pA)

= Inference Process

= Repeat until Cn approves.

Safe to approximate?

Data g NS “Ho™ o KB
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Inference Process




Multiple Cascaded Classifiers and Approxim%;%s%(M%pA)

= Demerit

= The time spending on inference is too long

Safe to approximate?
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lves lYes lYes

Inference Process




Multiclass-classifier and Multiple Approxima}g[\gs%J%QSrMA)

= Inference Process

= The multiclass-classifier predicts which approximator can approximate the
input data.

1

Inference Process




Multiclass-classifier and Multiple Approxima}%@jéj%\QSMA)

= Complementary training

- Test A1 with all data, produce the Complementary Select & Train

the label C1 for any input sample E..........A..I.I..(.’??.t..'?.r.‘ ..... -

that A1 can safely approximate

Test

Train
Test

Training Process



Multiclass-classifier and Multiple Approxima}%@jéj%\QSMA)

= Complementary training

. Complementary Select & Train
Allocation

= Test A2 with the remaining
data, produce the the label
C2 for any input sample that
A2 can safely approximate

Test

Train
Test

Training Process



Multiclass-classifier and Multiple Approxima}%@jéj%\QSMA)

= Complementary training

Complementary Select & Train
Allocation

Test
= Repeat until test An, the remaining
input samples without any label are _
Train
labeled as nC. Test

Training Process



Multiclass-classifier and Multiple ApproximMﬁA)

= Complementary training

Complementary
Allocation Select & Train

; i
) m <_: Discarded
’ Data for A1
ﬁ Data for A2

. l Test _
' Label C1,C2,....Cn,nC | | LEEEIEEY

= Train the multiclass-classifier and
approximators using iterative training.

' Train T
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Training Process




Multiclass-classifier and Multiple Approxima}%@jéj%\QSMA)

= Competitive training

= Test A1 with all data, obtain the

approximation error.
Select & Train

= Test A2 with all data, obtain the
approximation error.

= Test An with all data, obtain the
approximation error.

l Test

i Train
Test

Training Process
.



Multiclass-classifier and Multiple Approxima}g[\gs%J%QSrMA)

= Competitive training

Select & Train

Competitive
Allocation

l Test
= Generate the label for each data [ Label C1.C2....Cn.nC
according to the lowest i Train

approximation error. Test

Training Process
.



Multiclass-classifier and Multiple ApproximMﬁA)

= Competitive training

Train the multiclass-classifier and
approximators using iterative training.

Select & Train

........

' Label €1,C2,...,Cn,nC |

Discarded

Data for A1
Data for A2

Data for An

' Train T
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| Multiclass classifier

Training Process
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Hardware design R
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= Add a Controller to control the weight buffer inside the PE. &£
Classifier Approximator
Bus Bus
Scheduler Scheduler
PE PE PE PE
PE PE PE PE
Input FIFO Input FIFO
Output FIFO Cache Output FIFO Cache
P
Controller = CPU
The overall NPU design



Hardware design R
. Weight Buffer
Al A2 A3

= Weight buffer receives the signal from the controller, and then sechedule Cdeh el

approximators. ;
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Hardware design

A

= Read data from
Input FIFO.

Weight Buffer

Classifier Approximator
Bus Bus
Scheduler Scheduler
PE PE PE PE
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Hardware design
9 AN\ F=mml |
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Hardware design
9 ARSI
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Hardware design
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Hardware design
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Send back the result
from PE to output
FIFO.
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Hardware design

ATNF=mmd [

= Load the weights layer by layer.
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Experimental setup

e Compared with One-pass[ISCA’16] and Iterative training[ DAC’17]

e 8 benchmark applications

# | Benchmark Domain Train Data Test Data Approximator Topology Classifier Topology
1 | Black-Scholes Financial Analysis 70K options 30K options 6->8->1 6->8->2(4)

2 FFT Signal Processing 8K fp numbers 3K fp numbers 1->2->2->2 1->2->2(4)

3 Inversek?j Robotics 70K (x,y) pairs 30K (x.y) pairs 2->8->2 2->8->2(4)

4 Jmeint 3D gaming 70K traingles 30K traingles 18->32->16->2 18->16->2(4)

5 | JPEG encoder Compression 512+512 pixel color image |512%512 pixel color image 64->16->64 64->16->2(4)

6 K-means Machine Learning 100K pairs of (r,g,b) points | 50K pairs of (r,g.b) points 6->8->4->1 6->8->4->2(4)

7 Sobel Image Processing 512+512 pixel color image |512%512 pixel color image 9->8->1 9->8->2(4)

8 Bessel Scientific Computing 70K fp pairs 30K fp pairs 2->4->4->1 2->4->2(4)




Experiment Results

e Invocation increase 20%~30% on average.

Invocation increase 40%+ in sobel or kmeans benchmark.
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Experiment Results

e The approximation error is below the error bound in most benchmarks.

Normalized error
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Experiment Results P I

e The average speedup is 1.23x compared with one-pass method.
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Experiment Results P I

e The average energy reduction is 1.15x compared with one-pass method.
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Experiment e [

m

e Almost all samples have a corresponding approximator that can approximate it

— Approximatorl I — Approximator2
" — Approximator3 I — Unsafe-to-approximate
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